SYMBOLS

- A, = gross area of section 3
- A_j = area of submerged piers or piles in section 3
- a = area of subsection
- b = width of bridge opening, defined as the distance between abutment faces (figs. 5-8)
- $b_t =$ width of bridge opening at the water surface
- C' = coefficient of discharge for standard conditions
- C = coefficient of discharge
- E = a symbol representing the slope of the embandments expressed as, for example, 2 : 1, this being the ratio of the horizontal to the vertical distance
- e = an eccentricity ratio $= \frac{K_a}{K_b} \le 1.00$ (fig. 10)
- F = the Froude number; for section 3, $F_2 = \frac{Q}{A_3 \sqrt{gy_3}}$
- # = acceleration of gravity = 32.16
- h = height of water surface above an arbitrary datum
- $\Delta h = \text{difference}$ in elevation of water surface between section 1 and section 3
- $h_f = \text{head loss due to friction from section 1 to section 3}$
- j = ratio of projected area of the submerged portion of piers or piles in section 3 to the gross area of section $3 = A_J/A_S$
- $K = \text{conveyance of a section} = \frac{1.486}{R} R^{\frac{3}{16}} A$
- K_a = the conveyance of a portion of section 1 (fig. 10)
- K_b = the conveyance of a portion of sectio 1 (fig. 10)
- K_q = the conveyance of a portion of section 1 (fig. 10)
- k= an adjustment coefficient which accounts for the affect of secondary variables; $C=C^*\times k_p\times K_p$, and others
- $k_F = a$ coefficient that adjusts C' for the influence of a nonstandard value of F
- $k_{\tilde{\Phi}} = a$ coefficient that adjusts \mathbf{C}' for the influence of angularity of flow
- k_{θ} = a coefficient that adjusts C' for the influence of angle of wing wells
- $k_{\rm e}={\rm a}$ coefficient that adjusts C' for the influence of eccentricity of constriction
- $k_j = a$ coefficient that adjusts C' for the influence of piers and piles
- $k_r = a$ coefficient that adjusts C' for the influence caused by rounding entrance corner of abutment for vertical-faced constrictions
- $k_t = a$ coefficient that adjusts C' for the influence of submergence of bridge members
- $k_{\rm w}={\rm a}$ coefficient that adjusts C' for the influence of length of wing walls
- $k_x=a$ coefficient that adjusts C' for the influence of the ratio of distances x/b (figs. 26-27)
- k_y = a coefficient that adjusts for the influence of ratio of depth of water to width of opening, $\frac{y_a + y_b}{2b}$
- L = 1ength of the abutment (figs. 5-8)
- $L_{\rm w} = {
 m distance}$ from section 1 to the constriction (fig. 1)
- D =distance from constriction to beginning of drawdown
- m = the channel contraction ratio, expressed as a percent of channel contraction (figs. 11-12)
- n = Menning's coefficient of roughness
- Q = discharge in cubic feet per second
- q = discharge that could pass through the opening without contraction
- R = hydraulic radius

- r = radius of rounding of entrance corner of abutment for vertical-faced constrictions
- f m vertical distance between water level at section 1 and the lowest horizontal member of a partially submerged bridge (fig. 30B)
- V = mean velocity in a section
- v = mean velocity of an increment of area
- W = a measure of the length of a wing wall or chamfer (fig. 8)
- x = horizontal distance from the point of intersection of the abutment and embankment slopes to a point on the upstream embankment having the same alevation as section 1 (fig. 7)
- Y_a . Y_b = depth of water at the toe of the abutmenta (fig. 6)
- $y_3 = \text{average depth of water in section 3, } = \frac{A_3}{h}$
- z = the difference between h and the average depth y at a section
- α (alpha) = the velocity-head coefficient
- θ (theta) = the scute angle between a wing well and the plane of the constriction (fig. 8)
- ♦ (phi) = the scute angle between the plane of the construction and a line normal to the thread of the stream (fig. 9)

18336